z-logo
open-access-imgOpen Access
Development of extended-release formulation of domperidone using a blend of Raphia hookeri gum and hydroxypropyl methylcellulose as tablet matrix
Author(s) -
Emmanuel O. Olorunsola,
Stephen Olaribigbe Majekodunmi
Publication year - 2017
Publication title -
tropical journal of pharmaceutical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.209
H-Index - 36
eISSN - 1596-5996
pISSN - 1596-9827
DOI - 10.4314/tjpr.v16i10.5
Subject(s) - friability , domperidone , microcrystalline cellulose , ultimate tensile strength , matrix (chemical analysis) , dosage form , excipient , hydroxypropyl cellulose , materials science , chromatography , xanthan gum , chemistry , polymer , cellulose , composite material , ethyl cellulose , rheology , organic chemistry , medicine , dopamine , endocrinology
Purpose: To develop an extended-release formulation of domperidone using a blend of Raphia hookeri gum and hydroxypropyl methylcellulose as tablet matrix.Methods: Tablets (400 mg) containing 30 mg domperidone (DPD) were formulated using binary mixtures of hydroxypropyl methylcellulose (HPMC) and Raphia hookeri gum (RHG) as matrix former; and microcrystalline cellulose (MCC) as direct compression excipient. The proportions of the matrix formers (40 % of tablet weight) was varied as 100:0, 75:25, 50:50, 25:75 and 0:100. The composition of the matrix former was also kept constant (50:50) while MCC was varied as 40, 30, 20 and 10 %. The tablets were evaluated for compact density, tensile strength, friability and drug release over 24 h.Results: The tensile strength of tablets decreased while their friability increased with increase in the proportion of RHG. A similar trend was observed with decrease in the concentration of MCC. Tablets containing RHG alone as matrix former and 40 % MCC as direct compression excipient had tensile strength of 0.95 MNm-2, friability of 1.07 % and cumulative drug release of 83.2 % over a period of 24 h. Tablets containing equal proportions of HPMC and RHG as matrix former had the best release properties of 95.0 % over a period of 24 h.Conclusion: RHG is comparable with HPMC in terms of extending the release of  domperidone for a once daily administration. A suitable combination of the two  polymers for use as a matrix former is superior to either of the individual polymers.Keywords: Domperidone, Extended drug release, Hydroxypropyl methylcellulose, Raphia hookeri gum, Tablet properties

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here