z-logo
open-access-imgOpen Access
Biodiesel Production and Characterization from Used Vegetable Oil
Author(s) -
C.A. Odega,
G.T. Anguruwa,
C.O. Fakorede
Publication year - 2021
Publication title -
journal of applied science and environmental management
Language(s) - English
Resource type - Journals
eISSN - 2659-1499
pISSN - 2659-1502
DOI - 10.4314/jasem.v25i4.7
Subject(s) - flash point , biodiesel , diesel fuel , specific gravity , pour point , environmental science , vegetable oil , pulp and paper industry , renewable energy , biodiesel production , moisture , waste management , materials science , engineering , chemistry , food science , chemical engineering , composite material , organic chemistry , electrical engineering , catalysis
Biodiesel is a fuel produced from renewable resources; it is a clean alternative fuel, which has drawn the attention of energy researchers for the last two decades due to the disturbing effect of climate change caused by diesel fuel. This paper focuses on showcasing the qualities of biodiesel produced from used vegetable oil and the positive impact on the alarming change in climate today. This paper presents an experimental investigation on production of biodiesel from used vegetable oil (UVO) gotten from a road side bean cake (akara) seller. The oil that was intended to be thrown out was de-odoured and filtered to remove impurities. The filtered oil was then used for biodiesel production and characterized with physical and fuel properties such as density, viscosity, cloud point, refractive index, specific gravity, ash content, moisture content, flash point and cloud point. The results obtained were afterwards compared to ASTM (American Society for Testing and Materials) and EN (Europe’s) international standards. Two biodiesels samples were produced at different temperatures but the same timings. The biodiesel were produced at 700C at 40mins (biodiesel A) and 1000C at 40mins (biodiesel B) with values of specific gravity (0.98 kg/m3; 0.90 kg/m3), density (936kg/m3; 882kg/m3), kinematic viscosity (1.5mm/s2; 5.5 mm/s2), cloud point (150C; 20C), flash point (2600C min; 2000C min), moisture content (0.07%; 0.04%), refractive index (1.4609; 1.4398) and ash point (0.24%; 0.01%) respectively. On comparison, biodiesel A couldn’t match up to the international standards while biodiesel matched up to the standards given.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here