Open Access
Bio-electrosequence interpretation of late cretaceous sediments of the Southern Bornu Basin, Nigeria
Author(s) -
Samuel Oretade Bamidele
Publication year - 2021
Publication title -
global journal of geological sciences.
Language(s) - English
Resource type - Journals
ISSN - 1596-6798
DOI - 10.4314/gjgs.v19i1.9
Subject(s) - geology , paleontology , sedimentary depositional environment , transgressive , facies , aggradation , cretaceous , sequence stratigraphy , lithostratigraphy , sequence (biology) , palynology , sedimentary rock , fluvial , structural basin , ecology , pollen , biology , genetics
Integrated analysis that involves physical sedimentological, standard palynological and electrofacies analyses on ditch cuttings and suite of wireline logs from Gaibu–1 Well, southern Bornu were examined to identify critical sequence elements and construct a bio-sequence stratigraphical framework. Four (4) palynozones consisting of Triorites africaensis, Cretacaeiporites scabratus - Odontochitina costata, Droseridites senonicus and Syncolporites/Milfordia spp Assemblage Zones construed to be Late Cretaceous – younger successions. Nine (9) depositional sequences each with candidate maximum flooding surfaces (375, 900, 1875, 2250, 2600, 3050, 3400, 3800, 4300 m) marked by marker shales with high abundance and diversity of palynomorphs. Thus, equate with the local lithostratigraphy and global large-scale depositional cycles with candidate sequence boundaries (50, 725, 1625, 2175, 2490, 2850, 3300, 3610, 3960, 4470 m) ranging about 96.28 to 70.07 Ma. The delineated transgressive surfaces along the built sequences mark the subjected onset of marine flooding characterised with interchange of progradational to retrogradational facies. Delineated sequence elements generally show up-hole from progradational to retrogradational and aggradational that represents Lowstand Systems Tracts (LSTs), Transgressive Systems Tracts (TSTs) and Highstand Systems Tracts (HSTs) respectively. The LSTs are seen in form of prograding complex and slope fans, suggestive of good reservoirs. The TSTs consist of channel sand units and shales that depict retrogradational marine units, which could serve as both seals and source rocks for the sand units. The HSTs are made up of interplay of aggradational to progradational sediment packages that could serve as a potential source rock. The palaeoenvironmental indices depict the successions are deposited within continental to open marine settings.