
Adult stem cells in neural repair: Current options, limitations and perspectives
Author(s) -
Eric Domingos Mariano
Publication year - 2015
Publication title -
world journal of stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 18
ISSN - 1948-0210
DOI - 10.4252/wjsc.v7.i2.477
Subject(s) - stem cell , totipotent , adult stem cell , regenerative medicine , clinical uses of mesenchymal stem cells , embryonic stem cell , stem cell transplantation for articular cartilage repair , induced pluripotent stem cell , multipotent stem cell , biology , transplantation , microbiology and biotechnology , medicine , neurosphere , neuroscience , progenitor cell , surgery , genetics , gene
Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseases that defy doctors and researchers around the world. Stem cells can be divided into three main groups: (1) embryonic stem cells; (2) fetal stem cells; and (3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.