z-logo
open-access-imgOpen Access
Neural differentiation from embryonic stem cellsin vitro: An overview of the signaling pathways
Author(s) -
Jen-Hua Chuang,
Li-Chu Tung,
Yenshou Lin
Publication year - 2015
Publication title -
world journal of stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 18
ISSN - 1948-0210
DOI - 10.4252/wjsc.v7.i2.437
Subject(s) - microbiology and biotechnology , wnt signaling pathway , cellular differentiation , biology , embryonic stem cell , stem cell , induced pluripotent stem cell , signal transduction , regenerative medicine , fibroblast growth factor , receptor , biochemistry , gene
Neurons derived from embryonic stem cells (ESCs) have gained great merit in both basic research and regenerative medicine. Here we review and summarize the signaling pathways that have been reported to be involved in the neuronal differentiation of ESCs, particularly those associated with in vitro differentiation. The inducers and pathways explored include retinoic acid, Wnt/β-catenin, transforming growth factor/bone morphogenetic protein, Notch, fibroblast growth factor, cytokine, Hedgehog, c-Jun N-terminal kinase/mitogen-activated protein kinase and others. Some other miscellaneous molecular factors that have been reported in the literature are also summarized and discussed. These include calcium, calcium receptor, calcineurin, estrogen receptor, Hox protein, ceramide, glycosaminioglycan, ginsenoside Rg1, opioids, two pore channel 2, nitric oxide, chemically defined medium, cell-cell interactions, and physical stimuli. The interaction or crosstalk between these signaling pathways and factors will be explored. Elucidating these signals in detail should make a significant contribution to future progress in stem cell biology and allow, for example, better comparisons to be made between differentiation in vivo and in vitro. Of equal importance, a comprehensive understanding of the pathways that are involved in the development of neurons from ESCs in vitro will also accelerate their application as part of translational medicine.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here