z-logo
open-access-imgOpen Access
Antler stem cells and their potential in wound healing and bone regeneration
Author(s) -
Wei Zhang,
Changhong Ke,
Haihua Guo,
Li Xiao
Publication year - 2021
Publication title -
world journal of stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 18
ISSN - 1948-0210
DOI - 10.4252/wjsc.v13.i8.1049
Subject(s) - regeneration (biology) , antler , wound healing , stem cell , medicine , bone healing , microbiology and biotechnology , anatomy , surgery , biology , ecology
Compared to other vertebrates, the regenerative capacity of appendages in mammals is very limited. Deer antlers are an exception and can fully regenerate annually in postnatal mammals. This process is initiated by the antler stem cells (AnSCs). AnSCs can be divided into three types: (1) Antlerogenic periosteum cells (for initial pedicle and first antler formation); (2) Pedicle periosteum cells (for annual antler regeneration); and (3) Reserve mesenchyme cells (RMCs) (for rapid antler growth). Previous studies have demonstrated that AnSCs express both classic mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs), and are able to differentiate into multiple cell types in vitro . Thus, AnSCs were defined as MSCs, but with partial ESC attributes. Near-perfect generative wound healing can naturally occur in deer, and wound healing can be achieved by the direct injection of AnSCs or topical application of conditioned medium of AnSCs in rats. In addition, in rabbits, the use of both implants with AnSCs and cell-free preparations derived from AnSCs can stimulate osteogenesis and repair defects of bone. A more comprehensive understanding of AnSCs will lay the foundation for developing an effective clinical therapy for wound healing and bone repair.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here