z-logo
open-access-imgOpen Access
Weighted Finite State Transducer–Based Endpoint Detection Using Probabilistic Decision Logic
Author(s) -
Chung Hoon,
Lee Sung Joo,
Lee Yun Keun
Publication year - 2014
Publication title -
etri journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 46
eISSN - 2233-7326
pISSN - 1225-6463
DOI - 10.4218/etrij.14.2214.0030
Subject(s) - utterance , computer science , probabilistic logic , heuristic , artificial intelligence , speech recognition , machine learning , pattern recognition (psychology)
In this paper, we propose the use of data‐driven probabilistic utterance‐level decision logic to improve Weighted Finite State Transducer (WFST)‐based endpoint detection. In general, endpoint detection is dealt with using two cascaded decision processes. The first process is frame‐level speech/non‐speech classification based on statistical hypothesis testing, and the second process is a heuristic‐knowledge‐based utterance‐level speech boundary decision. To handle these two processes within a unified framework, we propose a WFST‐based approach. However, a WFST‐based approach has the same limitations as conventional approaches in that the utterance‐level decision is based on heuristic knowledge and the decision parameters are tuned sequentially. Therefore, to obtain decision knowledge from a speech corpus and optimize the parameters at the same time, we propose the use of data‐driven probabilistic utterance‐level decision logic. The proposed method reduces the average detection failure rate by about 14% for various noisy‐speech corpora collected for an endpoint detection evaluation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here