
Efficient Image Chaotic Encryption Algorithm with No Propagation Error
Author(s) -
Awad Abir,
Awad Dounia
Publication year - 2010
Publication title -
etri journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 46
eISSN - 2233-7326
pISSN - 1225-6463
DOI - 10.4218/etrij.10.1510.0063
Subject(s) - cryptosystem , nist , chaotic , encryption , algorithm , cryptography , computer science , theoretical computer science , entropy (arrow of time) , chaos (operating system) , hybrid cryptosystem , mathematics , computer engineering , artificial intelligence , computer security , physics , quantum mechanics , natural language processing
Many chaos‐based encryption methods have been presented and discussed in the last two decades, but very few of them are suitable to secure transmission on noisy channels or respect the standard of the National Institute of Standards and Technology (NIST). This paper tackles the problem and presents a novel chaos‐based cryptosystem for secure transmitted images. The proposed cryptosystem overcomes the drawbacks of existing chaotic algorithms such as the Socek, Xiang, Yang, and Wong methods. It takes advantage of the increasingly complex behavior of perturbed chaotic signals. The perturbing orbit technique improves the dynamic statistical properties of generated chaotic sequences, permits the proposed algorithm reaching higher performance, and avoids the problem of error propagation. Finally, many standard tools, such as NIST tests, are used to quantify the security level of the proposed cryptosystem, and experimental results prove that the suggested cryptosystem has a high security level, lower correlation coefficients, and improved entropy.