
Asymmetric Semi‐Supervised Boosting Scheme for Interactive Image Retrieval
Author(s) -
Wu Jun,
Lu MingYu
Publication year - 2010
Publication title -
etri journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 46
eISSN - 2233-7326
pISSN - 1225-6463
DOI - 10.4218/etrij.10.1510.0016
Subject(s) - boosting (machine learning) , support vector machine , artificial intelligence , computer science , machine learning , active learning (machine learning) , weighting , pattern recognition (psychology) , image retrieval , semi supervised learning , ensemble learning , content based image retrieval , image (mathematics) , medicine , radiology
Support vector machine (SVM) active learning plays a key role in the interactive content‐based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call “the small example problem” and “the asymmetric distribution problem.” This paper attempts to integrate the merits of semi‐supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias‐weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.