z-logo
open-access-imgOpen Access
Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum
Author(s) -
Tulkin H. Rasulov,
Elyuor Bakhtiyorovich Dilmurodov
Publication year - 2020
Publication title -
теоретическая и математическая физика
Language(s) - Russian
Resource type - Journals
eISSN - 2305-3135
pISSN - 0564-6162
DOI - 10.4213/tmf9898
Subject(s) - combinatorics , physics , mathematics
Изучается неограниченная операторная $(2\times 2)$-матрица $\mathcal A$ в прямой сумме двух гильбертовых пространств. Получены асимптотические формулы для числа собственных значений операторной матрицы $\mathcal A$. Рассматривается операторная $(2\times 2)$-матрица $\mathcal A_\mu$ ($\mu>0$ - параметр взаимодействия), ассоциированная гамильтонианом системы с не более чем тремя частицами на решетке $\mathbb Z^3$. Найдено критическое значение $\mu_0$ параметра взаимодействия $\mu$, при котором оператор $\mathcal A_{\mu_0}$ имеет бесконечное число собственных значений. Эти значения накапливаются к нижней и верхней граням существенного спектра. Получена асимптотика для числа таких собственных значений, лежащих как в левой, так и в правой части существенного спектра.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom