Необычная серия автономных дискретных интегрируемых уравнений на квадратной решетке
Author(s) -
R. N. Garifullin,
R. I. Yamilov
Publication year - 2019
Publication title -
теоретическая и математическая физика
Language(s) - Russian
Resource type - Journals
eISSN - 2305-3135
pISSN - 0564-6162
DOI - 10.4213/tmf9701
Subject(s) - kappa , mathematics , geometry
Представлена бесконечная серия автономных дискретных уравнений на квадратной решетке, обладающих иерархиями автономных обобщенных симметрий и законов сохранения по обоим направлениям решетки. Порядки этих симметрий и законов сохранения равны $\kappa N$, где $\kappa$ - произвольное натуральное число, а $N$ - номер уравнения в серии. В случае $N>2$ такая структура иерархий является новой для дискретных уравнений. Симметрии и законы сохранения строятся с помощью мастер-симметрий, которые находятся напрямую вместе с обобщенными симметриями. Данная схема построения законов сохранения представляется новой. Еще один новый момент заключается в том, что по одному из направлений в коэффициенты дискретных уравнений вводится время мастер-симметрии. В наиболее интересном случае $N=2$ показано, что обобщенная симметрия второго порядка тесно связана с интегрируемым уравнением типа релятивистского уравнения Тоды; для автономных дискретных уравнений такое свойство имеет место очень редко.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom