z-logo
open-access-imgOpen Access
Faster point compression for elliptic curves of $j$-invariant $0$
Author(s) -
Dmitrii Koshelev
Publication year - 2021
Publication title -
математические вопросы криптографии
Language(s) - Russian
Resource type - Journals
eISSN - 2222-3193
pISSN - 2220-2617
DOI - 10.4213/mvk381
Subject(s) - physics , combinatorics , invariant (physics) , mathematical physics , mathematics
Предлагается новый метод сжатия двух точек (до $2\lceil\log_2(q)\rceil + 4$ битов) для эллиптической кривой $E_b : y^2 = x^3 + b$ с $j$-инвариантом $0$ над конечным полем $\mathbb{F}_q$ при $q\equiv 1\pmod 3$. Точнее, получены простые явные формулы преобразования координат $x_0, y_0, x_1, y_1$ двух точек $P_0, P_1 \in E_b(\mathbb{F}_q)$ в два элемента $\mathbb{F}_q$, дополненные четырьмя битами. Для восстановления (на этапе разжатия) точек $P_0, P_1$ предлагается извлекать корень шестой степени $\sqrt[6]{Z} \in \mathbb{F}_q$ из некоторого элемента $Z \in \mathbb{F}_q$. Известно, что при $q\equiv 3\pmod 4$, $q\not\equiv 1\pmod {27}$ это можно сделать с использованием только одного возведения в степень в $\mathbb{F}_q$. Таким образом, новый метод сжатия оказывается значительно быстрее классического метода для координат $x_0, x_1$, в котором разжатие использует два возведения в степень в $\mathbb{F}_q$. Показано, что новый метод можно использовать для сжатия одной $\mathbb{F}_{q^2}$-точки на кривой $E_b$ с $b \in \mathbb{F}_{q^2}^*$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom