z-logo
open-access-imgOpen Access
Методы построения скрученных линейных рекуррентных последовательностей максимального периода, базирующиеся на факторизации многочленов Галуа в кольце матричных многочленов
Author(s) -
M A Goltvanitsa
Publication year - 2019
Publication title -
математические вопросы криптографии
Language(s) - Russian
Resource type - Journals
eISSN - 2222-3193
pISSN - 2220-2617
DOI - 10.4213/mvk306
Subject(s) - physics , combinatorics , crystallography , mathematics , chemistry
Пусть $p$ - простое число, $R=\mathrm{GR}(q^d,p^d)$ - кольцо Галуа мощности $q^d$ и характеристики $p^d$, где $q = p^r$, $S=\mathrm{GR}(q^{nd},p^d)$ - расширение степени $n$ кольца $R$ и $\check{S}$ - кольцо эндоморфизмов модуля $_RS$. Последовательность $v$ над $S$, удовлетворяющую закону рекурсии $$ \forall i\in\mathbb{N}_0 :\;\;\;v(i+m)= psi_{m-1}(v(i+m-1))+...+\psi_0(v(i)),\;\;\;\psi_0,...,\psi_{m-1}\in\check{S},$$ будем называть скрученной линейной рекуррентной последовательностью над $S$ с характеристическим многочленом $\Psi(x) = x^m - \sum_{j=0}^{m-1}\psi_jx^j$. Максимально возможный период последовательности такого вида равен $\tau=(q^{mn}-1)p^{d-1}$. В работе предлагаются новые методы построения многочленов $\Psi(x)$, задающих законы рекурсии для скрученных линейных рекуррентных последовательностей максимального периода. Данные методы основаны на поиске в кольце $\check{S}[x]$ делителей классических многочленов Галуа над $R$ периода $\tau$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom