Open Access
دراسة وتحليل مرضى Covid-19 باستخدام طرق التعلم الآلي
Author(s) -
ياسر الجناحي ياسر الجناحي
Publication year - 2021
Publication title -
deleted journal
Language(s) - Arabic
Resource type - Journals
ISSN - 1658-6336
DOI - 10.4197/comp.10-1.2
Subject(s) - covid-19 , bayes' theorem , naive bayes classifier , artificial intelligence , computer science , mathematics , machine learning , virology , bayesian probability , medicine , support vector machine , outbreak , infectious disease (medical specialty) , disease
. أنظمة التعلم الآلي (Machine Learning) في الرعاية الصحية تستخدم للتعرف على الأمراض وتشخيصها باستخدام بيانات المريض. وقد أدى استخدام أنظمة التعلم الآلي في التكنولوجيا إلى إصلاح وتحسين الرعاية الصحية، من خلال الكشف التلقائي عن الأمراض وتشخيصها، والتي بدورها تحسن صحة المريض وتنقذ الأرواح. لذلك، في هذه الدراسة، تم استخدام خوارزميات التعلم الآلي للتنبؤ بوفاة المرضى وتعافيهم. وباستخدام عدة خوارزميات سيتم توقع وفاة أو تعافي المرضى. وقد أعطت خوارزميات الـ Naïve Bayes و Bagged Trees أفضل معدلات أداء بنسبة 79? و 77? على التوالي. ومع ذلك، من حيث الدقة، أظهرت خوارزميات تصنيف الشجرة المتوسطة (MediumTree)(ensemble method Boosted Tree) والشجرة المجموعة المعززة دقة 89?. وأخيرًا أظهرت هذه الدراسة أن استخدام تقنية التعلم الآلي يمكن أن تنبه مقدمي الرعاية الصحية لتقديم علاج أسرع لمرضى فيروس كورونا عالي الخطورة (COVID-19) مما يساعد في إنقاذ الأرواح وتحسن جودة خدمة الرعاية الصحية.