z-logo
open-access-imgOpen Access
Transcriptional Regulation of Human NANOG by Alternate Promoters in Embryonic Stem Cells
Author(s) -
Satyabrata Das,
Snehalata Jena,
EunMi Kim,
Nicholas Zavazava,
Da. Levasseur
Publication year - 2012
Publication title -
journal of stem cell research and therapy
Language(s) - English
Resource type - Journals
ISSN - 2157-7633
DOI - 10.4172/2157-7633.s10-009
Subject(s) - homeobox protein nanog , biology , promoter , nanog homeobox protein , transcription factor , embryonic stem cell , induced pluripotent stem cell , chromatin , regulation of gene expression , genetics , rex1 , alternative splicing , transcriptional regulation , gene , microbiology and biotechnology , gene expression , gene isoform
The potential of pluripotent stem cells to be used for cell therapy depends on a comprehensive understanding of the molecular mechanisms underlying their unique ability to specify cells of all germ layers while undergoing unlimited self-renewal. Alternative splicing and alternate promoter selection contribute to this mechanism by increasing the number of transcripts generated from a single gene locus and thus enabling expression of novel protein variants which may differ in their biological role. The homeodomain-containing transcription factor NANOG plays a critical role in maintaining the pluripotency of Embryonic Stem Cells (ESC). Therefore, a thorough understanding of the transcriptional regulation of the NANOG locus in ESCs is necessary. Methods Regulatory footprints and transcription levels were identified for NANOG in human embryonic stem cells from data obtained using high-throughput sequencing methodologies. Quantitative real-time PCR following reverse transcription of RNA extracted human ESCs was used to validate the expression of transcripts from a region that extends upstream of the annotated NANOG transcriptional start. Promoter identification and characterization were performed using promoter reporter and electrophoretic mobility shift assays. Results Transcriptionally active chromatin marking and transcription factor binding site enrichment were observed at a region upstream of the known transcriptional start site of NANOG . Expression of novel transcripts from this transcriptionally active region confirmed the existence of NANOG alternative splicing in human ESCs. We identified an alternate NANOG promoter of significant strength at this upstream region. We also discovered that NANOG autoregulates its expression by binding to its proximal downstream promoter. Conclusion Our study reveals novel transcript expression from NANOG in human ESCs, indicating that alternative splicing increases the diversity of transcripts originating from the NANOG locus and that these transcripts are expressed by an alternate promoter. Alternative splicing and alternate promoter usage collaborate to regulate NANOG , enabling its function in the maintenance of ESCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here