z-logo
open-access-imgOpen Access
Causal Inference in the Age of Decision Medicine
Author(s) -
Amirnaser Yazdani,
Eric Boerwinkle
Publication year - 2015
Publication title -
journal of data mining in genomics and proteomics
Language(s) - English
Resource type - Journals
ISSN - 2153-0602
DOI - 10.4172/2153-0602.1000163
Subject(s) - causal inference , inference , personalized medicine , context (archaeology) , perspective (graphical) , precision medicine , computer science , data science , population , artificial intelligence , psychology , medicine , bioinformatics , biology , pathology , paleontology , environmental health
Causal analyses and causal inference is a growing area of biostatics. In parallel, there is increasing focus on using genomic information to guide medical practice, i.e. personalized medicine or decision medicine. This perspective discusses causal inference in the context of personalized or decision medicine, including the assumptions and the concept that the task is different depending on whether the primary goal is the average response of treatment in the population or the ability to characterize the response for an individual or a subgroup. This perspective provides a tutorial of modern causal inference and then provides suggestions how application of specific kinds of causal inference would promote advances in translational sciences. The concept of the subpopulation causal effect is one path toward improved decision medicine. A dataset containing cardiovascular disease risk factor levels and genomic information is analyzed and different causal effects are estimated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here