
Design and implementation of novel nutraceuticals and derivatives for treating intestinal disorders
Author(s) -
María José Barahona,
Vanessa Baratta,
Jenna Ollodart,
David Mulligan,
John P. Geibel
Publication year - 2019
Publication title -
future medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 69
eISSN - 1756-8927
pISSN - 1756-8919
DOI - 10.4155/fmc-2018-0313
Subject(s) - nutraceutical , medicine , calcium sensing receptor , disease , adverse effect , bioinformatics , pharmacology , biology , calcium , pathology , calcium metabolism
Gastrointestinal illnesses pose a significant worldwide disease burden and are associated with an array of medicinal and surgical therapies. Standard pharmaceutical options have adverse effects, prompting the rise of nutraceutical or food-derivative therapies. Here, we present an overview of the current nutraceutical therapies in gastrointestinal disease. We then introduce the calcium-sensing receptor (CaSR) as a novel therapeutic target. A G-protein-coupled receptor found in apical and basal intestinal cells, the CaSR modulates intestinal fluid secretion and mucosal integrity. Applying nutraceuticals that upregulate the CaSR may alleviate symptoms seen across a spectrum of illnesses. At last, we discuss how nanoparticle technology can be implemented to effectively deliver nutraceuticals to diseased regions of the intestine, thereby minimizing systemic side effects.