
Abnormal expression and clinical significance of surface receptors on natural killer cells in the peripheral blood of patients with non-small cell lung cancer
Author(s) -
Pengcheng Liu,
Xiaowen Feng,
Xuehua Zhao,
Jing Ye,
Fan He,
Hui Liu,
Ren-Ming Li,
Xuefu Wang,
Dahai Zhao
Publication year - 2022
Publication title -
neoplasma
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 50
eISSN - 1338-4317
pISSN - 0028-2685
DOI - 10.4149/neo_2022_220219n188
Subject(s) - tigit , lung cancer , receptor , flow cytometry , immunology , population , medicine , cell , natural killer cell , lymphocyte , cancer research , biology , immune system , t cell , cytotoxic t cell , in vitro , biochemistry , environmental health , genetics
Natural killer (NK) cells typically function as frontline lymphocytes against cancer although little is known about their engagement in non-small cell lung cancer (NSCLC). This study compared the performance and activity of NK cells and their subsets in the peripheral blood of NSCLC sufferers and healthy participants. In total, 67 healthy controls (40 males; 59.7%) and 56 patients with NSCLC (35 males; 62.5%) were included (mean age, 66.6 years). Flow cytometry identified NK cells and their subpopulations in external blood, and the total number, proportion, activity, surface activating, and inhibitory receptor expression levels were determined. Results showed that NK cell surface receptors CD107a, IFN-γ, and TNF-α activity were markedly reduced in lung cancer patients compared to healthy controls. The number and ratio of NK cells within the lymphocyte population were decreased in patients. The concentration of the inhibitory receptors TIGIT, TIM-3, CD96, PD-1, and Siglec-7 were increased in patients, whereas the expression level of the activating receptor NKP30 was decreased. Moreover, the expression levels of IFN-γ, TIGIT, CD96, PD-1, and TIM-3 were correlated with the clinical phase of NSCLC. These findings suggest that surface receptors from NK cells are likely to be involved in the evolution of NSCLC.