Open Access
microRNA-204 shuttled by mesenchymal stem cell-derived exosomes inhibits the migration and invasion of non-small-cell lung cancer cells via the KLF7/AKT/HIF-1α axis
Author(s) -
Xiaoni Liu,
Chuibin Zhang,
Hai Lin,
Xiaoyuan Tang,
Rong Zhou,
Huilan Wen,
Jie Li
Publication year - 2021
Publication title -
neoplasma
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 50
eISSN - 1338-4317
pISSN - 0028-2685
DOI - 10.4149/neo_2021_201208n1328
Subject(s) - microvesicles , vimentin , protein kinase b , mesenchymal stem cell , microrna , cancer research , epithelial–mesenchymal transition , a549 cell , exosome , biology , cancer stem cell , lung cancer , cell migration , microbiology and biotechnology , cell , metastasis , cancer , stem cell , signal transduction , immunology , medicine , pathology , gene , biochemistry , genetics , immunohistochemistry
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related death worldwide. Accumulating researches have highlighted the ability of exosome-encapsulated microRNAs (miRNAs or miRs) as potential circulating biomarkers for lung cancer. The current study aimed to evaluate the significance of mesenchymal stem cells (MSCs)-derived exosomal miR-204 in the invasion, migration, and epithelial-mesenchymal transition (EMT) of NSCLC cells. Initially, the expression of miR-204 in human NSCLC tissues and cells was determined by RT-qPCR, which demonstrated that miR-204 was downregulated in NSCLC tissues and cells. Next, Krüppel-like factor 7 (KLF7) was predicted and validated to be a target of miR-204 using dual-luciferase reporter gene assay. NSCLC A549 cells were treated with MSCs-derived exosomes, after which the migration and invasion of A549 cells were detected and expression of EMT-related proteins (E-cadherin, N-cadherin, and Vimentin), KLF7, p-AKT/AKT, and HIF-1α were measured. The results of gain- and loss-of-function assays revealed that miR-204 overexpression in MSCs-derived exosomes inhibited KLF7 expression and the AKT/HIF-1α pathway activity, resulting in impaired cell migration, invasion, as well as EMT. In conclusion, the key findings of the current study demonstrate that exosomal miR-204 from MSCs possesses anticarcinogenic properties against NSCLC via the KLF7/AKT/HIF-1α axis.