z-logo
open-access-imgOpen Access
HMGB1-activated fibroblasts promote breast cancer cells metastasis via RAGE/aerobic glycolysis
Author(s) -
Yuanping Chen,
Le Cai,
Xiaoqing Guo,
Zelei Li,
Xiaohong Liao,
Xuebing Zhang,
Li Huang,
Jing He
Publication year - 2021
Publication title -
neoplasma
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 50
eISSN - 1338-4317
pISSN - 0028-2685
DOI - 10.4149/neo_2020_200610n620
Subject(s) - hmgb1 , rage (emotion) , breast cancer , anaerobic glycolysis , cancer research , metastasis , glycolysis , cancer cell , chemistry , medicine , cancer , biology , metabolism , receptor , neuroscience
Highly expressed high mobility group box-1 protein (HMGB1) promotes tumor metastasis. Whether HMGB1 participates in breast cancer cell activation of fibroblasts is unknown. The culture medium of 6 breast cancer cell lines with different migration potential, and with HMGB1 overexpression or knockdown was used to induce fibroblast activation, and collagen and α-SMA expression were measured. We evaluated the migration potential of MDA-MB-231 cells with fibroblasts treated with 3-PO (3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one) inhibitor, anti-HMGB1 treatment, or RAGE (receptor for advanced glycation end products) knockdown. A lung metastasis murine model was used to evaluate whether the RAGE-knockdown fibroblasts mitigates MDA-MB-231 metastasis. Breast cancer cells that are highly migratory and have a high invasive potential, had higher HMGB1 expression and induced greater fibroblast activation strongly than cells with poorer motility. hrHMGB1 and the supernatants of HMGB1-overexpressed MCF-7 cells promoted fibroblast activation, but loss-HMGB1 of MDA-MB-231 abolished potential. Moreover, a novel mechanism was identified by which HMGB1 facilitated fibroblast activation by RAGE/aerobic glycolysis. Consistently, fibroblasts enhanced MDA-MB-231 metastasis, but the enhancement was reversed by 3-PO inhibition, anti-HMGB1 treatment, or RAGE knockdown in vitro and in vivo. We identified that HMGB1 secreted by breast cancer cells promotes fibroblast activation via RAGE/aerobic glycolysis, and activated fibroblasts enhance breast cancer cell metastasis through increased lactate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here