z-logo
open-access-imgOpen Access
Skullcapflavone I inhibits proliferation of human colorectal cancer cells via down-regulation of miR-107 expression
Author(s) -
W Zhang,
W Li,
Xiaoli Han
Publication year - 2019
Publication title -
neoplasma
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 50
eISSN - 1338-4317
pISSN - 0028-2685
DOI - 10.4149/neo_2018_180427n279
Subject(s) - cell growth , mapk/erk pathway , cancer research , cancer , colorectal cancer , microrna , proliferating cell nuclear antigen , cyclin d1 , signal transduction , biology , chemistry , cell cycle , microbiology and biotechnology , genetics , gene
Colorectal cancer (CRC) is a common malignant tumor with high global increase and mortality. While Skullcapflavone I has been reported to exert anti-tumor effect in several cancers, its role in CRC has not previously been investigated. Recent studies have also demonstrated that microRNA-107 (miR-107) and tropomyosin alpha-1 (TPM1) are important regulators of cancer cell proliferation, but it remains unclear if these are involved in regulating the effect of Skullcapflavone I on CRC cells. This study therefore assessed the effects of Skullcapflavone I on CRC cell proliferation and investigated miR-107 and TPM1 regulatory effects on this process. The results showed that Skullcapflavone I significantly suppressed cell proliferation and viability and down-regulated PCNA and Cyclin D1protein levels. It also down-regulated miR-107 expression which then promoted TPM1 expression, but miR-107 over-expression abolished Skullcapflavone I anti-proliferative effects. Furthermore, Skullcapflavone I inhibited the activations of MEK/ERK and NF-κB signal pathway activation by regulating TPM1 in HCT116 cells. These results demonstrated that Skullcapflavone I increased the expression of TPM1 by down-regulating miR-107 and inhibiting the MEK/ERK and NF-κB signal pathways. It then inhibited HCT116 cell proliferation, and therefore Skullcapflavone I may provide new methodology in colorectal cancer treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here