z-logo
open-access-imgOpen Access
NO-synthase activity in mitochondria of uterus smooth muscle: identification and biochemical properties
Author(s) -
G. V. Danylovych,
Danylovych IuV,
Maria O. Gulina,
T. V. Bohach,
Kosterin Sa
Publication year - 2019
Publication title -
general physiology and biophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.376
H-Index - 39
eISSN - 1338-4325
pISSN - 0231-5882
DOI - 10.4149/gpb_2018034
Subject(s) - atp synthase , antimycin a , protonophore , mitochondrion , chemistry , ruthenium red , arginine , citrate synthase , respiration , biophysics , biochemistry , rotenone , enzyme , biology , anatomy , amino acid , organic chemistry , calcium
Information about the catalytic and kinetic properties of mitochondria NO-synthase from uterus smooth muscle is missing currently. According to the data on MitoTracker Orange CM-H2TMRos and 4-аmino-5-methylamino-2',7'-difluorescein, diaminofluorescein-FM (DAF-FM) dye co-localization in uterine smooth muscle cells, presented in this paper, NO can be synthesized in their mitochondria. High activity of NO synthase requires the presence of substrates of respiration, L-arginine, Ca2+ and NADPH. It is established that the dependence of NO production on the concentration of L-arginine has a bell-shaped character with a maximum of 75 μM, and the apparent affinity constant for L-arginine is 28.9 ± 9.1 μM. The dependence of NO production on Ca2+ concentration has a maximum at 100-250 μM; the activation constant for Ca2+ is 44.4 ± 14.5 μM. The inhibitor of Ca2+ transport in mitochondria ruthenium red (RuR), as well as the inhibitor of NO-synthase NG-nitro-L-arginine (NA), reduces NO production. The biosynthesis of NO by mitochondria depends on its energized level: it is stimulated by the addition of respiration substrates, suppressed with specific inhibitors of the electron transport chain (rotenone and antimycin A) and carbonyl-cyanide 3-chlorophenylhydrazone (CCCP) protonophore.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom