z-logo
open-access-imgOpen Access
Kinetic analysis of bacteriophage Sf6 binding to outer membrane protein a using whole virions
Author(s) -
Natalia B. Hubbs,
Mareena M. Whisby-Pitts,
Jonathan L. McMurry
Publication year - 2019
Publication title -
acta virologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.412
H-Index - 33
eISSN - 1336-2305
pISSN - 0001-723X
DOI - 10.4149/av_2019_412
Subject(s) - shigella flexneri , bacteriophage , bacterial outer membrane , biophysics , chemistry , kinetics , receptor–ligand kinetics , microbiology and biotechnology , surface plasmon resonance , receptor , biology , biochemistry , nanotechnology , materials science , escherichia coli , physics , gene , quantum mechanics , nanoparticle
For successful infection, viruses must recognize their respective host cells. A common mechanism of host recognition by viruses is to utilize a portion of the host cell as a receptor. Bacteriophage Sf6, which infects Shigella flexneri, uses lipopolysaccharide as a primary receptor and then requires interaction with a secondary receptor, a role that can be fulfilled by either outer membrane proteins (Omp) A or C. Our previous work showed that specific residues in the loops of OmpA mediate Sf6 infection. To better understand Sf6 interactions with OmpA loop variants, we determined the kinetics of these interactions through the use of biolayer interferometry, an optical biosensing technique that yields data similar to surface plasmon resonance. Here, we successfully tethered whole Sf6 virions, determined the binding constant of Sf6 to OmpA to be 36 nM. Additionally, we showed that Sf6 bound to five variant OmpAs and the resulting kinetic parameters varied only slightly. Based on these data, we propose a model in which Sf6: Omp receptor recognition is not solely based on kinetics, but likely also on the ability of an Omp to induce a conformational change that results in productive infection. Keywords: Sf6; Shigella flexneri; OmpA; biolayer interferometry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom