z-logo
open-access-imgOpen Access
Function of myosin during entry and egress of equid herpesvirus type 1 in primary murine neurons
Author(s) -
Joanna Cymerys,
Anna Słońska,
Joanna Skwarska,
Marcin W. Bańbura
Publication year - 2016
Publication title -
acta virologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.412
H-Index - 33
eISSN - 1336-2305
pISSN - 0001-723X
DOI - 10.4149/av_2016_04_410
Subject(s) - myosin , actin , biology , microbiology and biotechnology , motor protein , virology , myosin light chain kinase , viral replication , virus , microtubule
Equid herpesvirus type 1 (EHV-1) is a major pathogen of horses with a worldwide distribution, which can cause various clinical signs ranging from mild respiratory disease to neurological disorders. To initiate an effective infection, EHV-1 evolved a broad spectrum of mechanisms exploiting the host cell, including its actin filaments. An actin-myosin-driven transport has been described to precede cellular entry of different viruses. Therefore, in the present study we investigated the role of actin motor protein - myosin, during replication of two EHV-1 strains: Jan-E (wild-type EHV-1 strain isolated from aborted equine fetus) and Rac-H (attenuated strain highly adapted in cell cultures in vitro) in primary murine neurons. In order to investigate this, we used two inhibitors: blebbistatin (BLB; non-muscle myosin II inhibitor) and 2,3-butanedione monoxime (BDM; inhibitor of myosin ATPase). Our results demonstrated that limitation of Jan-E EHV-1 replication occurred in cells treated with myosin inhibitor, which confirmed the important role of actin motor proteins during the entry and egress of EHV-1 virions. Application of blebbistatin did not affect Rac-H EHV-1 replication, while BDM caused reduction of replication in murine neurons. Based on these results it can be assumed that EHV-1 virion movement was myosin-dependent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom