z-logo
open-access-imgOpen Access
On the acceptance of “fake” histopathology: A study on frozen sections optimized with deep learning
Author(s) -
Mario Siller,
Lea Maria Stangassinger,
Christina Kreutzer,
Peter Boor,
Roman D. Bülow,
Theo F. J. Kraus,
Saskia von Stillfried,
S Wölfl,
Sébastien CouillardDesprés,
Gertie J. Oostingh,
A Hittmair,
Michael Gadermayr
Publication year - 2022
Publication title -
journal of pathology informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 17
ISSN - 2153-3539
DOI - 10.4103/jpi.jpi_53_21
Subject(s) - computer science , artificial intelligence , deep learning , frozen section procedure , digital pathology , generative adversarial network , artificial neural network , normalization (sociology) , machine learning , pattern recognition (psychology) , pathology , medicine , sociology , anthropology

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom