z-logo
open-access-imgOpen Access
Basics of epigenetics and role of epigenetics in diabetic complications
Author(s) -
Andamuthu Yamunadevi,
Pratibha Ramani,
M Rajmohan,
Sengottaiyan Mahendraperumal,
N. Ganapathy
Publication year - 2021
Publication title -
journal of pharmacy and bioallied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.268
H-Index - 36
eISSN - 0976-4879
pISSN - 0975-7406
DOI - 10.4103/jpbs.jpbs_771_20
Subject(s) - epigenetics , biology , chromatin remodeling , epigenetic regulation of neurogenesis , dna methylation , histone , chromatin , microrna , genetics , bioinformatics , microbiology and biotechnology , gene expression , gene
The term "Epigenetics" includes mechanisms by which genetic expression is altered without a change in the underlying DNA sequence. The changes caused by epigenetic mechanisms are inheritable and are one way in direction (irreversible) and also explains why there is differences in genetic expressions of monozygotic twins. The epigenetic mechanisms alter the genetic expressions through DNA methylation, posttranslational modifications (PTMs) of histone, and noncoding RNAs. DNA methylation and histone PTMs cause relaxation or condensation of chromatin units. The epigenetic actions of noncoding RNAs such as microRNAs, small nucleolar RNAs, small interfering RNAs, and long noncoding RNAs act by modifying transcription factors or by degrading target messenger RNAs and their translation factors. Various pathologies and environmental factors cause changes in the cellular epigenetic mechanisms and the epigenetic alterations occurring in diabetes mellitus (DM) are reviewed. DM causes hemodynamic changes and metabolic changes like hyperglycemia and dyslipidemia. These changes induce oxidative stress and activate intracellular signaling and kinases in the target cells. Epigenetic alterations cause chromatin remodeling and altered gene expression leading to inflammation, proliferation, atrophy, hypertrophy, etc.; thereby, diabetic complications such as neuropathy, nephropathy, vasculitis result in the corresponding target organ. When these epigenetic alterations persist for a longer period without intervention, the target cells attain "metabolic memory" meaning that these epigenetic mutations cannot be reversed even after attaining normal blood glucose levels. Thus, epigenetics, an insightful and efficient tool in genomic research, has started crawling into the research arena and needs to reach leaps and bounds for the better understanding of health and diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here