Osteogenic Differentiation from Mouse Adipose-Derived Stem Cells and Bone Marrow Stem Cells
Author(s) -
Cheng-Pu Huang,
Keng-Chia Hsu,
CheanPing Wu,
HsiTien Wu
Publication year - 2022
Publication title -
the chinese journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.396
H-Index - 31
eISSN - 2666-0059
pISSN - 0304-4920
DOI - 10.4103/cjp.cjp_64_21
Subject(s) - stem cell , mesenchymal stem cell , adipose tissue , microbiology and biotechnology , bone marrow , bone marrow stem cell , runx2 , stem cell transplantation for articular cartilage repair , adult stem cell , amniotic stem cells , cellular differentiation , chemistry , biology , in vitro , immunology , endothelial stem cell , endocrinology , osteoblast , biochemistry , gene
Mesenchymal stem cells (MSCs) have been successfully cultured and proliferated in vitro and can differentiate into a variety of specific cell types, such as adipocytes or osteocytes, through chemical stimulation. One of the major applications of MSCs is in regenerative medicine research. MSCs can be collected from many adult tissues. In this experiment, an 8-week-old expresses green fluorescent protein (EGFP) transgenic mouse, FVB/NCrl-Tg(Pgk1-EGFP)01Narl, was used to obtain adipose-derived stem cells (ADSCs) from abdominal adipose tissue and bone marrow stem cells (BMSCs) from femur bone marrow. We compared the differences in the growth rate and differentiation ability of ADSCs and BMSCs. The growth curves of different generations (P1 and P3) of the stem cells showed that the proliferation rate of ADSCs was significantly higher than that of BMSCs. The purity of stem cells was measured by the number of colony-forming unit fibroblast. The results show that the number of colonies of ADSCs at different generations (P1 and P3) was significantly higher than that of BMSCs and that the purity of ADSCs was greater than that of BMSCs. Comparing the ability of ADSCs and BMSCs to induce osteogenic differentiation and the expression of Runx2 and Opn genes, the results show that ADSCs had a higher rate of osteogenic differentiation than BMSCs. In summary, mouse ADSCs display similar osteogenic differentiation ability to BMSCs but have a better capacity than BMSCs in terms of stem cell purity and cell proliferation in vitro.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom