z-logo
open-access-imgOpen Access
Non-human primate pluripotent stem cells for the preclinical testing of regenerative therapies
Author(s) -
Ignacio Rodríguez-Polo,
Rüdiger Behr
Publication year - 2022
Publication title -
neural regeneration research/neural regeneration research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.335689
Subject(s) - induced pluripotent stem cell , embryonic stem cell , stem cell , reprogramming , stem cell therapy , biology , neuroscience , medicine , microbiology and biotechnology , cell , genetics , gene
Non-human primates play a key role in the preclinical validation of pluripotent stem cell-based cell replacement therapies. Pluripotent stem cells used as advanced therapy medical products boost the possibility to regenerate tissues and organs affected by degenerative diseases. Therefore, the methods to derive human induced pluripotent stem cell and embryonic stem cell lines following clinical standards have quickly developed in the last 15 years. For the preclinical validation of cell replacement therapies in non-human primates, it is necessary to generate non-human primate pluripotent stem cell with a homologous quality to their human counterparts. However, pluripotent stem cell technologies have developed at a slower pace in non-human primates in comparison with human cell systems. In recent years, however, relevant progress has also been made with non-human primate pluripotent stem cells. This review provides a systematic overview of the progress and remaining challenges for the generation of non-human primate induced pluripotent stem cells/embryonic stem cells for the preclinical testing and validation of cell replacement therapies. We focus on the critical domains of (1) reprogramming and embryonic stem cell line derivation, (2) cell line maintenance and characterization and, (3) application of non-human primate pluripotent stem cells in the context of selected preclinical studies to treat cardiovascular and neurodegenerative disorders performed in non-human primates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here