
Hydrogel-based local drug delivery strategies for spinal cord repair
Author(s) -
Robert B. Shultz,
Yinghui Zhong
Publication year - 2021
Publication title -
neural regeneration research/neural regeneration research
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.290882
Subject(s) - medicine , spinal cord , spinal cord injury , drug delivery , regeneration (biology) , drug , anesthesia , pharmacology , biology , chemistry , organic chemistry , psychiatry , microbiology and biotechnology
Spinal cord injury results in significant loss of motor, sensory, and autonomic functions. Although a wide range of therapeutic agents have been shown to attenuate secondary injury or promote regeneration/repair in animal models of spinal cord injury, clinical translation of these strategies has been limited, in part due to difficulty in safely and effectively achieving therapeutic concentrations in the injured spinal cord tissue. Hydrogel-based drug delivery systems offer unique opportunities to locally deliver drugs to the injured spinal cord with sufficient dose and duration, while avoiding deleterious side effects associated with systemic drug administration. Such local drug delivery systems can be readily fabricated from biocompatible and biodegradable materials. In this review, hydrogel-based strategies for local drug delivery to the injured spinal cord are extensively reviewed, and recommendations are made for implementation.