z-logo
open-access-imgOpen Access
Axon regeneration induced by environmental enrichment- epigenetic mechanisms
Author(s) -
Bor Luen Tang
Publication year - 2020
Publication title -
neural regeneration research/neural regeneration research
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.264440
Subject(s) - epigenetics , neuroscience , axon , environmental enrichment , regeneration (biology) , histone , neuroprotection , biology , creb , microbiology and biotechnology , genetics , gene , transcription factor
Environmental enrichment is known to be beneficial for cognitive improvement. In many animal models of neurological disorders and brain injury, EE has also demonstrated neuroprotective benefits in neurodegenerative diseases and in improving recovery after stroke or traumatic brain injury. The exact underlying mechanism for these phenomena has been unclear. Recent findings have now indicated that neuronal activity elicited by environmental enrichment induces Ca 2+ influx in dorsal root ganglion neurons results in lasting enhancement of CREB-binding protein-mediated histone acetylation. This, in turn, increases the expression of pro-regeneration genes and promotes axonal regeneration. This mechanism associated with neuronal activity elicited by environmental enrichment-mediated pathway is one of several epigenetic mechanisms which modulate axon regeneration upon injury that has recently come to light. The other prominent mechanisms, albeit not yet directly associated with environmental enrichment, include DNA methylation/demethylation and N 6 -methyladenosine modification of transcripts. In this brief review, I highlight recent work that has shed light on the epigenetic basis of environmental enrichment-based axon regeneration, and discuss the mechanism and pathways involved. I further speculate on the implications of the findings, in conjunction with the other epigenetic mechanisms, that could be harness to promote axon regeneration upon injury.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here