
MicroRNA-219 alleviates glutamate-induced neurotoxicity in cultured hippocampal neurons by targeting calmodulin-dependent protein kinase II gamma
Author(s) -
Ting Wang,
Qun Cai,
Wenjie Yang,
Haihua Fan,
Jianfeng Yi,
Feng Xu
Publication year - 2018
Publication title -
neural regeneration research/neural regeneration research
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.235059
Subject(s) - viability assay , neurotoxicity , mtt assay , microbiology and biotechnology , hippocampal formation , flow cytometry , glutamate receptor , transfection , biology , chemistry , apoptosis , biochemistry , endocrinology , gene , receptor , organic chemistry , toxicity
Septic encephalopathy is a frequent complication of sepsis, but there are few studies examining the role of microRNAs (miRs) in its pathogenesis. In this study, a miR-219 mimic was transfected into rat hippocampal neurons to model miR-219 overexpression. A protective effect of miR-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons, and an underlying mechanism involving calmodulin-dependent protein kinase II γ (CaMKIIγ) was demonstrated. miR-219 and CaMKIIγ mRNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). After neurons were transfected with miR-219 mimic, effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. In addition, a luciferase reporter gene system was used to confirm CaMKIIγ as a target gene of miR-219. Western blot assay and rescue experiments were also utilized to detect CaMKIIγ expression and further verify that miR-219 in hippocampal neurons exerted its effect through regulation of CaMKIIγ. MTT assay and qRT-PCR results revealed obvious decreases in cell viability and miR-219 expression after glutamate stimulation, while CaMKIIγ mRNA expression was increased. MTT, flow cytometry, and caspase-3 activity assays showed that miR-219 overexpression could elevate glutamate-induced cell viability, and reduce cell apoptosis and caspase-3 activity. Moreover, luciferase CaMKIIγ-reporter activity was remarkably decreased by co-transfection with miR-219 mimic, and the results of a rescue experiment showed that CaMKIIγ overexpression could reverse the biological effects of miR-219. Collectively, these findings verify that miR-219 expression was decreased in glutamate-induced neurons, CaMKIIγ was a target gene of miR-219, and miR-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling CaMKIIγ expression.