
Exosomes: a novel therapeutic target for Alzheimer’s disease?
Author(s) -
Zhiyou Cai,
Ming Xiao,
Sohel H. Quazi,
Zunyu Ke
Publication year - 2018
Publication title -
neural regeneration research/neural regeneration research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.232490
Subject(s) - microvesicles , neuroinflammation , exosome , microbiology and biotechnology , amyloid beta , oxidative stress , extracellular , microglia , disease , chemistry , biology , neuroscience , medicine , immunology , inflammation , pathology , microrna , biochemistry , gene
Extracellular exosomes are formed inside the cytoplasm of cells in compartments known as multivesicular bodies. Thus, exosomes contain cytoplasmic content. Multivesicular bodies fuse with the plasma membrane and release exosomes into the extracellular environment. Comprehensive research suggests that exosomes act as both inflammatory intermediaries and critical inducers of oxidative stress to drive progression of Alzheimer's disease. An important role of exosomes in Alzheimer's disease includes the formation of neurofibrillary tangles and beta-amyloid production, clearance, and accumulation. In addition, exosomes are involved in neuroinflammation and oxidative stress, which both act as triggers for beta-amyloid pathogenesis and tau hyperphosphorylation. Further, it has been shown that exosomes are strongly associated with beta-amyloid clearance. Thus, effective measures for regulating exosome metabolism may be novel drug targets for Alzheimer's disease.