z-logo
open-access-imgOpen Access
Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease
Author(s) -
Isaac G. Onyango
Publication year - 2018
Publication title -
neural regeneration research/neural regeneration research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.224362
Subject(s) - mitochondrial biogenesis , mitophagy , neuroscience , bioenergetics , disease , mitochondrion , medicine , oxidative stress , mechanism (biology) , bioinformatics , biology , autophagy , pathology , microbiology and biotechnology , apoptosis , biochemistry , philosophy , epistemology
Alzheimer's disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here