
Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury
Author(s) -
Kayoko Hayakawa,
Christopher Haas,
Itzhak Fischer
Publication year - 2016
Publication title -
neural regeneration research/neural regeneration research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.180725
Subject(s) - spinal cord injury , spinal cord , regeneration (biology) , axon , neuroscience , phenotype , glial scar , neuroglia , medicine , microglia , biology , microbiology and biotechnology , central nervous system , inflammation , immunology , gene , biochemistry
In the aftermath of spinal cord injury, glial restricted precursors (GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration. Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion. Importantly, such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells. Furthermore, clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord, altering the phenotypic and functional properties of grafted cells. This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture. Furthermore, we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors, and call attention to the importance of the microenvironment of grafted cells, underscoring the importance of modulating the environment of the injured spinal cord.