z-logo
open-access-imgOpen Access
Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD-95-MLK3 signaling module
Author(s) -
Jie Mou,
Xiaomei Liu,
Dong-Sheng Pei
Publication year - 2014
Publication title -
neural regeneration research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.147932
Subject(s) - kainate receptor , ampa receptor , glutamate receptor , map kinase kinase kinase , microbiology and biotechnology , hippocampal formation , kainic acid , kinase , protein kinase a , postsynaptic density , neuroscience , chemistry , biology , receptor , biochemistry
Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad-Glur6-9c on the phosphorylation of JNK, MLK3 and mitogen-activated kinase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of JNK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was significantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here