
Material and mechanical factors: new strategy in cellular neurogenesis
Author(s) -
Hillary Stoll,
Il Keun Kwon,
Jung Yul Lim
Publication year - 2014
Publication title -
neural regeneration research/neural regeneration research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.143426
Subject(s) - neurogenesis , neuroscience , regenerative medicine , neural stem cell , materials science , nanotechnology , biology , microbiology and biotechnology , stem cell
Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharmacological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and flow shear) stimulations of cellular neurogenesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering.