z-logo
open-access-imgOpen Access
Dissolution behavior of β-cyclodextrin molecular inclusion complexes of aceclofenac
Author(s) -
Kamal Dua,
Kavita Pabreja,
M. M. V. Ramana,
Vinny Lather
Publication year - 2011
Publication title -
journal of pharmacy and bioallied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.268
H-Index - 36
eISSN - 0976-4879
pISSN - 0975-7406
DOI - 10.4103/0975-7406.84457
Subject(s) - dissolution , chemistry , differential scanning calorimetry , aceclofenac , monomer , nuclear chemistry , cyclodextrin , kinetics , fourier transform infrared spectroscopy , solubility , chromatography , organic chemistry , polymer , chemical engineering , physics , quantum mechanics , engineering , thermodynamics
The objective of the present investigation was to study the effect of β-cyclodextrin (β-CD) on the in vitro dissolution of aceclofenac (AF) from molecular inclusion complexes. Aceclofenac molecular inclusion complexes in 1:1 and 1:2 M ratio were prepared using a kneading method. The in vitro dissolution of pure drug, physical mixtures, and cyclodextrin inclusion complexes was carried out. Molecular inclusion complexes of AF with β-CD showed a considerable increase in the dissolution rate in comparison with the physical mixture and pure drug in 0.1 N HCl, pH 1.2, and phosphate buffer, pH 7.4. Inclusion complexes with a 1:2 M ratio showed the maximum dissolution rate in comparison to other ratios. Fourier transform infrared spectroscopy and differential scanning calorimetry studies indicated no interaction between AF and β-CD in complexes in solid state. Molecular modeling results indicated the relative energetic stability of the β-CD dimer-AF complex as compared to β-CD monomer-AF. Dissolution enhancement was attributed to the formation of water soluble inclusion complexes with β-CD. The in vitro release from all the formulations was best described by first-order kinetics (R(2) = 0.9826 and 0.9938 in 0.1 N HCl and phosphate buffer, respectively) followed by the Higuchi release model (R(2) = 0.9542 and 0.9686 in 0.1 N HCl and phosphate buffer, respectively). In conclusion, the dissolution of AF can be enhanced by the use of a hydrophilic carrier like β-CD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here