
Monte Carlo and experimental dosimetric study of the mHDR-v2 brachytherapy source
Author(s) -
Rakesh Mohan Chandola,
Samit Tiwari,
M. K. Kowar,
Vivek Choudhary
Publication year - 2010
Publication title -
journal of cancer research and therapeutics/journal of cancer research and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 39
eISSN - 0973-1482
pISSN - 1998-4138
DOI - 10.4103/0973-1482.77068
Subject(s) - brachytherapy , monte carlo method , imaging phantom , ionization chamber , dose rate , data set , dosimetry , radiation treatment planning , computational physics , nuclear medicine , physics , computer science , mathematics , medical physics , ionization , optics , statistics , radiation therapy , medicine , ion , quantum mechanics
The conventional treatment planning system (TPS) gives analytical calculations with ± 15 to 20% dose, which may lead to over exposure of critical organs or under dose of target. It is to obtain dose distribution parameters of nucletron high dose rate (HDR) microselectron v2 (mHDR-v2) 192 Ir brachytherapy source by experiment and by calculated study using Monte Carlo (MC) EGSnrc code, and to find the similarity between them, and with any past study. To validate data, another MC GEANT4 study done in this work on the same source is also presented. Different software of the computer e.g. paint, excel, etc are employed for preparation of figures and graphs. The measured study of the source was done using an in-air ionization chamber, water phantom, and measurement set-up, while the calculated study was done by modeling the set up of the measured study by using the MC EGSnrc and GEANT4. Mean and probability are used in calculation of average values, and calculation of the uncertainties in result and discussion. The measured and calculated values of dose rate constant, radial dose function, and 2D anisotropy function were found to be in agreement with each other as well as with published data. The results of this study can be used as input to TPS.