z-logo
open-access-imgOpen Access
Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis
Author(s) -
R Karunanithi,
Sumathi Ganesan,
T. M. R. Panicker,
MPaul Korath,
K Jagadeesan
Publication year - 2007
Publication title -
journal of medical physics/journal of medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.292
H-Index - 24
eISSN - 1998-3913
pISSN - 0971-6203
DOI - 10.4103/0971-6203.37481
Subject(s) - bone mineral , femoral neck , osteoporosis , medicine , bone density , radiography , nuclear medicine , postmenopausal women , radiology , orthodontics , dentistry
The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here