z-logo
open-access-imgOpen Access
Determination of absorbed dose to water for high-energy photon and electron beams-comparison of the standards DIN 6800-2 (1997), IAEA TRS 398 (2000) and DIN 6800-2 (2006)
Author(s) -
Golam Abu Zakaria,
Wilhelm Schuette
Publication year - 2007
Publication title -
journal of medical physics/journal of medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.292
H-Index - 24
eISSN - 1998-3913
pISSN - 0971-6203
DOI - 10.4103/0971-6203.31143
Subject(s) - thermoluminescent dosimeter , photon , dosimetry , absorbed dose , electron , code of practice , physics , nuclear physics , medical physics , nuclear medicine , optics , radiation , dosimeter , medicine , engineering , engineering ethics
For the determination of the absorbed dose to water for high-energy photon and electron beams the IAEA code of practice TRS-398 (2000) is applied internationally. In Germany, the German dosimetry protocol DIN 6800-2 (1997) is used. Recently, the DIN standard has been revised and published as Draft National Standard DIN 6800-2 (2006). It has adopted widely the methodology and dosimetric data of the code of practice. This paper compares these three dosimetry protocols systematically and identifies similarities as well as differences. The investigation was done with 6 and 18 MV photon as well as 5 to 21 MeV electron beams. While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using cylindrical as well as plane-parallel chambers. The discrepancies in the determination of absorbed dose to water between the three protocols were 0.4% for photon beams and 1.5% for electron beams. Comparative measurements showed a deviation of less than 0.5% between our measurements following protocol DIN 6800-2 (2006) and TLD inter-comparison procedure in an external audit.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here