
Monte Carlo-based dose calculation for32P patch source for superficial brachytherapy applications
Author(s) -
Srinivas Sridhar,
Selvam T Palani,
Sandeep K. Saxena,
D.A.R. Babu,
Ashutosh Dash
Publication year - 2015
Publication title -
journal of medical physics/journal of medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.292
H-Index - 24
eISSN - 1998-3913
pISSN - 0971-6203
DOI - 10.4103/0971-6203.152232
Subject(s) - brachytherapy , monte carlo method , nuclear medicine , physics , source model , materials science , medicine , computational physics , radiation therapy , radiology , mathematics , statistics
Skin cancer treatment involving (32)P source is an easy, less expensive method of treatment limited to small and superficial lesions of approximately 1 mm deep. Bhabha Atomic Research Centre (BARC) has indigenously developed (32)P nafion-based patch source (1 cm × 1 cm) for treating skin cancer. For this source, the values of dose per unit activity at different depths including dose profiles in water are calculated using the EGSnrc-based Monte Carlo code system. For an initial activity of 1 Bq distributed in 1 cm(2) surface area of the source, the calculated central axis depth dose values are 3.62 × 10(-10) GyBq(-1) and 8.41 × 10(-11) GyBq(-1)at 0.0125 and 1 mm depths in water, respectively. Hence, the treatment time calculated for delivering therapeutic dose of 30 Gy at 1 mm depth along the central axis of the source involving 37 MBq activity is about 2.7 hrs.