z-logo
open-access-imgOpen Access
Computational models as predictors of HIV treatment outcomes for the Phidisa cohort in South Africa
Author(s) -
Andrew D. Revell,
Paul Khabo,
Lotty Ledwaba,
Sean Emery,
Dechao Wang,
Robin Wood,
Carl Morrow,
Hugo Tempelman,
Raph L. Hamers,
Peter Reiss,
Ard van Sighem,
A. Pozniak,
Julio Montaner,
H. Clifford Lane,
Brendan A. Larder
Publication year - 2016
Publication title -
southern african journal of hiv medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.859
H-Index - 18
eISSN - 2078-6751
pISSN - 1608-9693
DOI - 10.4102/hivmed.v17i1.450
Subject(s) - medicine , viral load , cohort , genotyping , regimen , human immunodeficiency virus (hiv) , receiver operating characteristic , antiretroviral therapy , statistics , immunology , genotype , biochemistry , chemistry , mathematics , gene

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here