z-logo
open-access-imgOpen Access
Gas geochemistry and the origins of H2S in the Montney Formation
Author(s) -
P Lacerda Silva,
G R Chalmers,
A M M Bustin,
R M Bustin
Publication year - 2022
Language(s) - English
Resource type - Reports
DOI - 10.4095/329794
Subject(s) - geology , methane , geochemistry , hydrocarbon , petroleum seep , mineralogy , petroleum , petrology , paleontology , chemistry , organic chemistry
The geology of the Montney Formation and the geochemistry of its produced fluids, including nonhydrocarbon gases such as hydrogen sulfide were investigated for both Alberta and BC play areas. Key parameters for understanding a complex petroleum system like theMontney play include changes in thickness, depth of burial, mass balance calculations, timing and magnitudes of paleotemperature exposure, as well as kerogen concentration and types to determine the distribution of hydrocarbon composition, H2S concentrations and CO2 concentrations. Results show thatthere is first-, second- and third- order variations in the maturation patterns that impact the hydrocarbon composition. Isomer ratio calculations for butane and propane, in combination with excess methane estimation from produced fluids, are powerful tools to highlight effects of migration in thehydrocarbon distribution. The present-day distribution of hydrocarbons is a result of fluid mixing between hydrocarbons generated in-situ with shorter-chained hydrocarbons (i.e., methane) migrated from deeper, more mature areas proximal to the deformation front, along structural elements like theFort St. John Graben, as well as through areas of lithology with higher permeability.The BC Montney play appears to have hydrocarbon composition that reflects a larger contribution from in-situ generation, while the Montney play in Alberta has a higher proportion of its hydrocarbon volumes from migrated hydrocarbons. Hydrogen sulphide is observed to be laterally discontinuous andfound in discrete zones or pockets. The locations of higher concentrations of hydrogen sulphide do not align with the sulphate-rich facies of the Charlie Lake Formation but can be seen to underlie areas of higher sulphate ion concentrations in the formation water. There is some alignment between CO2and H2S, particularly south of Dawson Creek; however, the cross-plot of CO2 and H2S illustrates some deviation away from any correlation and there must be other processes at play (i.e., decomposition of kerogen or carbonate dissolution). The sources of sulphur in the produced H2S were investigatedthrough isotopic analyses coupled with scanning electron microscopy, energy dispersive spectroscopy, and mineralogy by X-ray diffraction.The Montney Formation in BC can contain small discrete amounts of sulphur in the form of anhydrite as shown by XRD and SEM-EDX results. Sulphur isotopic analyses indicate that the most likely source of sulphur is from Triassic rocks, in particular, the Charlie Lake Formation, due to its closeproximity, its high concentration of anhydrite (18-42%), and the evidence that dissolved sulphate ions migrated within the groundwater in fractures and transported anhydrite into the Halfway Formation and into the Montney Formation. The isotopic signature shows the sulphur isotopic ratio of theanhydrite in the Montney Formation is in the same range as the sulphur within the H2S gas and is a lighter ratio than what is found in Devonian anhydrite and H2S gas. This integrated study contributes to a better understanding of the hydrocarbon system for enhancing the efficiency of and optimizingthe planning of drilling and production operations. Operators in BC should include mapping of the Charlie Lake evaporites and structural elements, three-dimensional seismic and sulphate ion concentrations in the connate water, when planning wells, in order to reduce the risk of encounteringunexpected souring.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here