Open Access
Whole-rock lithogeochemistry, Nd-Hf isotopes, and in situ zircon geochemistry of VMS-related felsic rocks, Finlayson Lake VMS district, Yukon
Author(s) -
Matthew J. Manor,
Stephen J. Piercey
Publication year - 2021
Language(s) - English
Resource type - Reports
DOI - 10.4095/328992
Subject(s) - felsic , geology , geochemistry , zircon , mafic , basalt , magmatism , volcanic rock , continental arc , petrogenesis , petrology , volcano , paleontology , tectonics
The Finlayson Lake district in southeastern Yukon is composed of a Late Paleozoic arc-backarc system that consists of metamorphosed volcanic, plutonic, and sedimentary rocks of the Yukon-Tanana and Slide Mountain terranes. These rocks host >40 Mt ofpolymetallic resources in numerous occurrences and styles of volcanogenic massive sulphide (VMS) mineralization. Geochemical and isotopic data from these rocks support previous interpretations that volcanism and plutonism occurred in arc-marginal arc (e.g., Fire Lake formation) and continentalback-arc basin environments (e.g., Kudz Ze Kayah formation, Wind Lake formation, and Wolverine Lake group) where felsic magmatism formed from varying mixtures of crust- and mantle-derived material. The rocks have elevated high field strength element (HFSE) and rare earth element (REE)concentrations, and evolved to chondritic isotopic signatures, in VMS-proximal stratigraphy relative to VMS-barren assemblages. These geochemical features reflect the petrogenetic conditions that generated felsic rocks and likely played a role in the localization of VMS mineralization in thedistrict. Preliminary in situ zircon chemistry supports these arguments with Th/U and Hf isotopic fingerprinting, where it is interpreted that the VMS-bearing lithofacies formed via crustal melting and mixing with increased juvenile, mafic magmatism; rocks that were less prospective havepredominantly crustal signatures. These observations are consistent with the formation of VMS-related felsic rocks by basaltic underplating, crustal melting, and basalt-crustal melt mixing within an extensional setting. This work offers a unique perspective on magmatic petrogenesis that underscoresthe importance of integrating whole-rock with mineral-scale geochemistry in the characterization of VMS-related stratigraphy.