z-logo
open-access-imgOpen Access
Modulation of insulin-like growth factor-1 receptor and its signaling network for the treatment of cancer: current status and future perspectives
Author(s) -
Meizhong Jin,
Elizabeth Buck,
Mark J. Mulvihill
Publication year - 2013
Publication title -
oncology reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.637
H-Index - 21
eISSN - 1970-5565
pISSN - 1970-5557
DOI - 10.4081/oncol.2013.216
Subject(s) - crosstalk , medicine , signal transduction , monoclonal antibody , insulin receptor , insulin like growth factor , epidermal growth factor receptor , clinical trial , receptor , growth factor , cancer research , bioinformatics , insulin , pharmacology , biology , immunology , antibody , microbiology and biotechnology , insulin resistance , physics , optics
Based on over three decades of pre-clinical data, insulin-like growth factor-1 receptor (IGF-1R) signaling has gained recognition as a promoter of tumorogenesis, driving cell survival and proliferation in multiple human cancers. As a result, IGF-1R has been pursued as a target for cancer treatment. Early pioneering efforts targeting IGF-1R focused on highly selective monoclonal antibodies, with multiple agents advancing to clinical trials. However, despite some initial promising results, recent clinical disclosures have been less encouraging. Moreover, recent studies have revealed that IGF-1R participates in a dynamic and complex signaling network, interacting with additional targets and pathways thereof through various crosstalk and compensatory signaling mechanisms. Such mechanisms of bypass signaling help to shed some light on the decreased effectiveness of selective IGF- 1R targeted therapies (e.g. monoclonal antibodies) and suggest that targeting multiple nodes within this signaling network might be necessary to produce a more effective therapeutic response. Additionally, such findings have led to the development of small molecule IGF-1R inhibitors which also co-inhibit additional targets such as insulin receptor and epidermal growth factor receptor. Such findings have helped to guide the design rationale of numerous drug combinations that are currently being evaluated in clinical trials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom