
Study of the steering of a wide span vehicle controlled by a local positioning system
Author(s) -
Volodymyr Bulgakov,
Simone Pascuzzi,
Semjons Ivanovs,
Volodymyr Kuvachоv,
Yulia Postol,
Francesco Santoro,
Viktor Melnyk
Publication year - 2021
Publication title -
journal of agricultural engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 18
eISSN - 2239-6268
pISSN - 1974-7071
DOI - 10.4081/jae.2021.1144
Subject(s) - span (engineering) , precision agriculture , simulation , kinematics , automotive engineering , signal (programming language) , engineering , computer science , structural engineering , agriculture , ecology , programming language , physics , classical mechanics , biology
Controlled traffic farming allows to minimize traffic-induced soil compaction by a permanent separation of the crop zone from the traffic lanes used by wide span tractors. The Authors developed an agricultural wide span vehicle equipped with a skid equipment for turning and an automatic driving system prototype based on a laser beam. The aim of this work was to study the kinematic conditions that control the steering of this machine. Furthermore, the accuracy and the maximum delay time of the signal transmission by the automatic driving system of the set-up was also assessed. In comparison with crawler tractors, the turning of the agricultural wide span vehicle needs a smaller difference in the moments applied to its right- and left-side wheels. For the predetermined accuracy of the beam position relative to the plant rows, ±ds = ±0.025 m, the accuracy of the direction of the laser beam at a distance S=200 m should not be more than ±0.07° and ±0.0014°, considering a run length of 1000 m. Furthermore, at a speed V=2.5 m s–1 a trajectory deviation φ≤5° requires a topmost delay time of the control signal of Δtmax=0.11 s is required.