Use of soil moisture active passive satellite data and WorldClim 2.0 data to predict the potential distribution of visceral leishmaniasis and its vector <em>Lutzomyia longipalpis</em> in Sao Paulo and Bahia states, Brazil
Author(s) -
Moara de Santana Martins Rodgers,
Elivelton da Silva Fonseca,
Prixia Nieto,
John B. Malone,
Jeffery C. Luvall,
Jennifer C. McCarroll,
Ryan Avery,
Maria Emília Bavia,
Raúl Borges Guimarães,
Xue Wen,
Marta Mariascimento Silva,
Deborah Daniela Madureira Trabuco Carneiro,
Luciana Lobato Cardim
Publication year - 2022
Publication title -
geospatial health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.545
H-Index - 36
eISSN - 1970-7096
pISSN - 1827-1987
DOI - 10.4081/gh.2022.1095
Subject(s) - environmental science , visceral leishmaniasis , spatial distribution , precipitation , water content , environmental niche modelling , moisture , ecological niche , remote sensing , leishmaniasis , ecology , geography , meteorology , biology , habitat , geology , immunology , geotechnical engineering
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom