z-logo
open-access-imgOpen Access
Clinicopathologic characteristics of primary pleural epithelioid hemangioendothelioma
Author(s) -
Chad A. Reade,
Apar Kishor Ganti,
Anne Kessinger
Publication year - 2011
Publication title -
oncology reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.637
H-Index - 21
eISSN - 1970-5565
pISSN - 1970-5557
DOI - 10.4081/68
Subject(s) - medicine , epithelioid hemangioendothelioma , primary (astronomy) , hemangioendothelioma , pathology , dermatology , immunohistochemistry , physics , astronomy
Background: Children with a spatial processing disorder (SPD) require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Materials and methods: Participants were ten children (aged between 6;0 [years;months] and 9;9) with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise – Sentences Test (LISN-S). In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program – Earobics - for approximately 15 minutes per day for twelve weeks. Results: There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (p=0.03 to 0.0008, η2=0.75 to 0.95, n=5), but not for the Earobics group (p=0.5 to 0.7, η2=0.1 to 0.04, n=5). Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. Conclusions: LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom