z-logo
open-access-imgOpen Access
Mechanical Properties and Interface Microstructure of SAC305 Solder Joints Made to a Ag-Pd-Pt Thick Film Metallization: Part 2—Isothermal Aging Effects
Author(s) -
Paul T. Vianco,
Alice C. Kilgo,
Bonnie Beth McKenzie,
Shelley Williams,
Robert Ferrizz,
Curtis Co
Publication year - 2021
Publication title -
journal of microelectronics and electronic packaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.192
H-Index - 17
eISSN - 1555-8037
pISSN - 1551-4897
DOI - 10.4071/imaps.1463995
Subject(s) - soldering , materials science , intermetallic , microstructure , metallurgy , isothermal process , composite material , alloy , physics , thermodynamics
The performance and reliability were documented for solder joints made between the 96.5Sn-3.0Ag-0.5Cu (wt.%, abbreviated SAC305) Pb-free solder and a Ag-Pd-Pt thick film conductor on an alumina substrate. The Sheppard’s hook pull test was used to assess the solder joint strength. The Part 1 study confirmed that the solder joint fabrication process had a wide process window. The current study determined that the SAC305 solder joints maintained that robustness after accelerated aging at temperatures of 70–205°C and time durations of 5–200 d. Short-term aging of 5–10 d caused a peak in the pull strength peak that resulted from precipitation hardening by Ag-Pd and (Pd, Pt)xSny intermetallic compound (IMC) particles. The pull strengths did not decrease significantly after longer aging times at 70°C and 100°C; those conditions were accelerations of typical service lifetimes. Longer aging times at temperatures of 135–205°C resulted in a gradual, albeit not catastrophic, strength decrease when the precipitation hardening mechanism was lost to dissolution of the particle phases and their reprecipitation at the solder/alumina interface. The failure modes were ductile fracture in the solder except for the most severe aging conditions. These findings confirmed that the SAC305 solder/Ag-Pd-Pt thick film interconnections have excellent long-term reliability for hybrid microcircuit and high-temperature electronics applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom