z-logo
open-access-imgOpen Access
Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells
Author(s) -
Emanuela FelleyBosco,
Florent C. Bender,
Andrew F. G. Quest
Publication year - 2002
Publication title -
biological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.127
H-Index - 55
eISSN - 0717-6287
pISSN - 0716-9760
DOI - 10.4067/s0716-97602002000200007
Subject(s) - enos , nitric oxide synthase , caveolin 1 , endothelial nos , nitric oxide , microbiology and biotechnology , pdz domain , biology , caveolin , context (archaeology) , caveolae , chemistry , biochemistry , signal transduction , endocrinology , paleontology
Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO) is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS) for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2(+)-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue), might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here